

Installation, Operation and Maintenance Manual

Lync WQ-RS

Commercial Reverse Osmosis Systems

Disclaimer:

The information contained in this manual is subject to change without notice from Watts Heating and Hot Water Solutions LLC dba Lync by Watts ("Lync"). Lync makes no warranty of any kind with respect to this material, including, but not limited to, implied warranties of merchantability and fitness for a particular application. Lync is not liable for errors appearing in this manual, nor for incidental or consequential damages occurring in connection with the furnishing, performance, or use of these materials.

Engineered Solutions

Lync • 425 W Everman Pkway, St. 101 • Fort Worth, TX 76134

USA: T: (817) 335-9531

Technical Support • (800) 433-5654 (ext. 3) • Mon-Fri, 8 am - 5 pm CST

© 2022 LYNC

Contents

1.	INTRODUCTION	3
	1.1. Specifications	4
	1.2. Reverse Osmosis Overview	5
	1.3. Pretreatment	5
2.	CONTROLS, INDICATORS, AND COMPONENTS	7
	2.1. System Components	7
	2.2.Controller Drawing	10
3.	OPERATION	11
	3.1. Installation	11
	3.2. Plumbing Connections	11
	3.3. Electrical Connections	11
	3.4. Startup	12
	3.4.1. WQRS-005-R, WQRS-010-R, and WQRS-015-R Systems:	12
	3.4.2. WQRS-030-R, WQRS-060-R, WQRS-090-R, and WQRS-180-R Systems:	13
4.	ROC-4 CONTROLLER OPERATION AND MAINTENANCE	15
	4.1. Control Box Installation	22
5.	REPLACEMENT PART LIST	25
	5.1. WQRS-005-R, WQRS-010-R, and WQRS-015-R Systems	25
	5.2. WQRS-030-R, and WQRS-060-R Systems	25
	5.3. WQRS-090-R, and WQRS-180-R Systems	26
6.	MEMBRANE REPLACEMENT	27
ΑP	PENDIX A - CONTROLLER PROGRAMMING: PARAMETERS	28
	CONTROLLER FAULT CONDITION DISPLAYS	29
	WQ-RS OPERATION AND MAINTENANCE LOG	30
	RO TROUBLESHOOTING GUIDE	31
	MOTOR TROUBLESHOOTING GUIDE	32
	RO SYSTEM TROUBLESHOOTING	34
۸ ۵	DENDIV B. DETERMINING ELOW DATES	25

1. INTRODUCTION

WARNING!

Do not use with water that is microbiologically unsafe or of unknown quality without adequate disinfection before or after the system.

- Pretreatment is necessary to eliminate chemicals that would attack membrane materials.
- Turn off unit, shut off feed water, and disconnect electrical power when working on the unit.
- · Never allow the pump to run dry.
- Never start the pump with the reject valve closed.
- Never allow the unit to freeze or operate with a feed water temperature above 100°F
- · Save manual for future reference.
- Please refer to <u>Section 6: MEMBRANE REPLACEMENT</u> for operating parameters according
 to your specific feed water Silt Density Index (SDI). For all other settings according to your
 specific feed water quality, please contact your Lync representative. A chemical analysis of
 the feed water should be conducted prior to the initial sizing and selection of this system.

NOTES:

Changes in operating variables are beyond the control of Lync. The end user is responsible for the safe operation of this equipment.

The suitability of the product water is the responsibility of the end user.

Successful long-term performance of an RO system depends on proper operation and maintenance of the system. This includes the initial system startup and operational startups and shutdowns.

Prevention of fouling or scaling of the membranes is not only a matter of system design, but also a matter of proper operation. Record keeping and data normalization are required in order to know the actual system performance and to enable corrective measures when necessary. Complete and accurate records are also required in case of a system performance warranty claim.

Changes in the operating parameters of an RO system can be caused by changes in the feed water or can be a sign of trouble. Maintaining an operation and maintenance log is crucial in diagnosing and preventing system problems. For your reference, a typical log sheet is included in this manual.

1.1. Specifications

	WQRS	WQRS	WQRS	WQRS	wors	wqrs	wqrs
	-005-R	-010-R	-015-R	-030-R	-060-R	-090-R	-180-R
Productivity (GPD / GPM) *	3600 / 2.5	7200 / 5.0	10800 / 7.5	21600 / 15	43200 / 30	86400 / 60	172800 / 120
Membrane percent rejection				98 %			
% Recovery (adjustable)	25 - 75 %	42 - 75 %	50 - 75 %	50 - 75 %	50 - 75 %	65 - 75 %	65 - 75 %
Membrane Size	4" x 40"	4" x 40"	4" x 40"	8" x 40"	8" x 40"	8" x 40"	8" x 40"
Membranes Per Vessel	1	1	1	1	1	4	4
Pressure Vessel Array	1:1	1:1:1:1	1:1:1:1:1:1	1:1:1	1:1:1:1:1:1	2:1	3:2:1
Number Of Membranes	2	4	6	3	6	3	6
Prefilter (5 micron cartridge)	4" x 20"	4" x 20"	4" x 20"	7" x 31"	7" x 31"	7" x 40 "	7" x 40 "
Feed Water Connection	1" NPT	1" NPT	1" NPT	2" Flange	2" Flange	2 ½ " Flange	3" Flange
Product Water Connection	3/4" NPT	3/4" NPT	3/4" NPT	1½″ Flange	1½″ Flange	2" Flange	2 ½ " Flange
Reject Water Connection	3/4 " NPT	3/4 " NPT	3/4 " NPT	1" Flange	1" Flange	1½″ Flange	1½″ Flange
Feed Water Required	5 GPM @ 50% recovery	10 GPM @ 50% recovery	15 GPM @ 50% recovery	60 GPM @ 50% recovery	60 GPM @ 50% recovery	93 GPM @ 65% recovery	185 GPM @ 65% recovery
Minimum Feed Water Pressure				20 psi			
Maximum Feed Water Pressure		90 psi			125	psi	
Drain Required (maximum)	10 GPM	15 GPM	15 GPM	30 GPM	60 GPM	90 GPM	180 GPM
Pump	5 hp / TEFC	5 hp / TEFC	5 hp / TEFC	10 hp / TEFC	10 hp / TEFC	20 hp / TEFC	30 hp / TEFC
	230 VAC	230 VAC	230 VAC	230 VAC	230 VAC	460 VAC	460 VAC
Flootrical Demoissance	3-phase	3-phase	3-phase	3-phase	3-phase	3-phase	3-phase
Electrical Requirement	60 Hz	60 Hz	60 Hz	60 Hz	60 Hz	60 Hz	60 Hz
	15 amps	15 amps	15 amps	25 amps	25 amps	30 amps	40 amps
Dimensions (L x W x H)	51"x18"x57"	51"x18"x57"	51"x18"x57"	108"x42"x72"	108"x42"x72"	196"x41"x79"	196"x41"x79"
Shipping Weight (estimated)	400 lb.	600 lb.	800 lb.	1600 lb.	2200 lb.	2800 lb.	3800 lb.

NOTE: For all other guideline information, please contact your Lync representative. Published maximum production rates are based on a feed water of 77°F, SDI of less than 3, 1000 ppm TDS, and pH 8. Individual membrane productivity may vary (±15%). May be operated on other feed waters with reduced capacity. Percent rejection is based on membrane manufacturer's specifications; overall system percent rejection may be less.

1.2. Reverse Osmosis Overview

Reverse Osmosis (RO) systems utilize semipermeable membrane elements to separate the feed water into two streams. The pressurized feed water is separated into purified (product) water and concentrate (reject) water. Impurities in the feed water are carried to drain by the reject water. It is critical to maintain adequate reject flow in order to prevent membrane scaling and/or fouling.

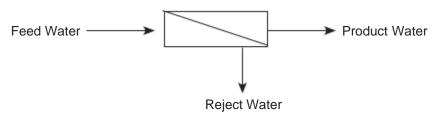


Figure 1-1: RO Membrane

1.3. Pretreatment

The RO feed water must be pretreated in order to prevent membrane damage and/or fouling. Table below shows the feed water chemistry requirements.

рН	6 to 9
Hardness (maximum)	Less than 1 grain per gallon as CaCO3 (Softened) or anti scale chemical injection if not softened (contact your Lync representative)
Water Pressure	20 – 125 psi depending on model (refer to table in Section 1.1.)
Temperature	35 - 100°F (2 - 38°C)
Free Chlorine	None allowed
Iron (maximum)	0.1 ppm
Manganese	0.05 ppm
Oil and H₂S	None Allowed
Turbidity	Less than 1.0 NTU
Silt Density Index (SDI)	Less than 5.0 SDI

Proper pretreatment is essential for reliable operation of any RO system. Pretreatment requirements vary depending on the nature of the feed water. Pretreatment (and post-treatment) equipment is sold separately. The most common forms of pretreatment are described below.

Media Filter - Used to remove large suspended solids (sediment) from the feed water. Backwashing the media removes the trapped particles. Backwash can be initiated by time or differential pressure.

Water Softener - Used to remove calcium and magnesium from the feed water in order to prevent hardness scaling. The potential for hardness scaling is predicted by the Langelier Saturation Index (LSI). The LSI should be zero or negative throughout the unit unless approved antiscalant are used. Softening is the preferred method of controlling hardness scale.

Carbon Filter - Used to remove chlorine and organics from the feed water. Free chlorine will cause rapid irreversible damage to the membranes.

The residual free chlorine present in most municipal water supplies will damage the thin film composite structure of the membranes used in this unit. Carbon filtration or sodium bisulfite injection should be used to completely remove the free chlorine residual.

Chemical Injection - Typically used to feed antiscalant, coagulant, or bisulfite into the feed water or to adjust the feed water pH.

Prefilter Cartridge - Used to remove smaller suspended solids and trap any particles that may be generated by the other pretreatment. The cartridge(s) should be replaced when the pressure drop across the housing increases 5 - 10 psig over the clean cartridge pressure drop. The effect of suspended solids is measured by the silt density index (SDI) test. An SDI of five (5) or less is specified by most membrane manufacturers and three (3) or less is recommended.

Iron & Manganese - Iron should be removed to less than 0.1 ppm. Manganese should be removed to less than 0.05 ppm. Special media filters and/or chemical treatment is commonly used.

pH - The pH is often lowered to reduce the scaling potential.

Silica - Reported on the analysis as SiO2. Silica forms a coating on membrane surfaces when the concentration exceeds its solubility. Additionally, the solubility is highly pH and temperature dependent. Silica fouling can be prevented with chemical injection and/or reducing the recovery.

2. CONTROLS, INDICATORS, AND COMPONENTS

2.1. System Components

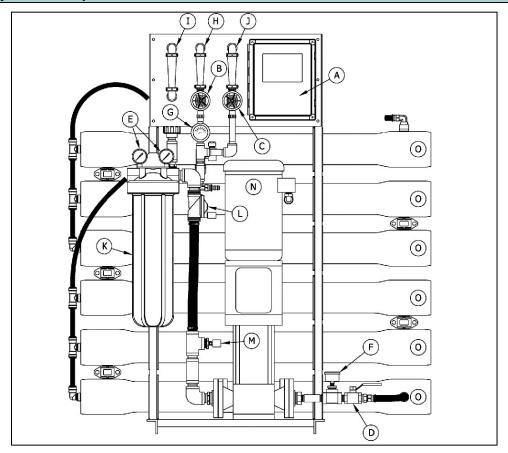


Figure 2-1: WQRS-005-R, -010-R and 015-RS System Components

- A. Controller Controls the operation of the system and displays the product water quality.
- B. Reject Control Valve Controls the amount of reject flow.
- C. Reject Recycle Control Valve Controls the amount of reject recycle flow.
- D. Pump Discharge Valve Used to throttle the pump.
- E. Prefilter Pressure Gauges Indicates the inlet and outlet pressure of the prefilter. The difference between these two gauges is the prefilter differential pressure.
- F. Pump Discharge Pressure Gauge Indicates the pump discharge pressure.
- G. Reject Pressure Gauge Indicates the reject pressure.
- H. Reject Flow Meter Indicates the reject flow rate in gallons per minute (gpm).
- I. Product Flow Meter Indicates the product flow rate in gallons per minute (gpm).
- J. Reject Recycle Flow Meter Reject recycle flow rate in gallons per minute (gpm).
- K. Prefilter Housing Contains the RO prefilter.
- L. Automatic Inlet Valve Opens when pump is on and closes when the pump is off.
- M. Low Pressure Switch Sends a signal to the controller if the pump suction pressure is low.
- N. RO Feed Pump Pressurizes the RO feed water.
- O. RO Membrane Vessels Contains the RO membranes.

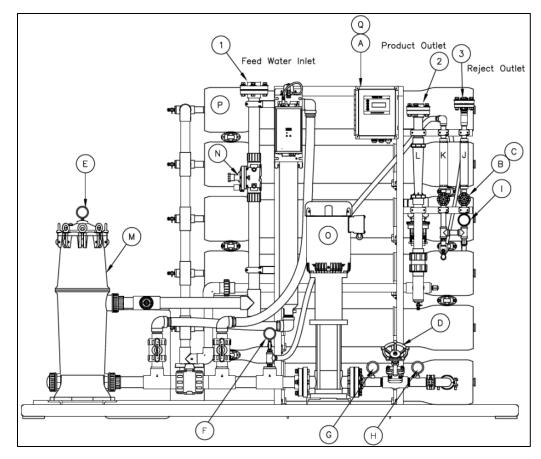


Figure 2-2: WQRS-030-R, -060-R System Components

- A. Controller Controls the operation of the system and displays the product water quality.
- B. Reject Control Valve Controls the amount of reject flow.
- C. Reject Recycle Control Valve Controls the amount of reject recycle flow.
- D. Pump Discharge Valve Used to throttle the pump.
- E. Prefilter Inlet Pressure Gauges Indicates the inlet pressure of the prefilter.
- F. Pump Suction Pressure Gauge Indicates the prefilter outlet and pump suction pressure. The difference between this gauge and the prefilter inlet gauge is the prefilter differential pressure.
- G. Pump Discharge Pressure Gauge Indicates the pump discharge pressure.
- H. Membrane Feed Pressure Gauge Indicates the membrane feed pressure.
- I. Reject Pressure Gauge Indicates the reject pressure.
- J. Reject Flow Meter Indicates the reject flow rate in gallons per minute (gpm).
- K. Reject Recycle Flow Meter Indicates the reject recycle flow in gpm.
- L. Product Flow Meter Indicates the product flow rate in (gpm).
- M. Prefilter Housing Contains the RO prefilters.
- N. Automatic Inlet Valve Opens when the pump is on and closes when the pump is off.
- O. RO Feed Pump Pressurizes the RO feed water.
- P. RO Membrane Vessels Contains the RO membranes.
- Q. Motor starter/transformer enclosure.

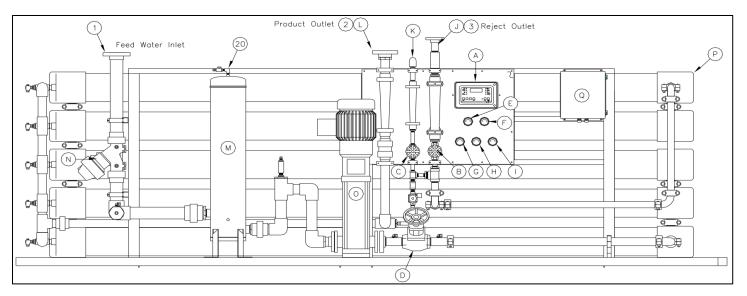


Figure 2-3: WQRS-090-R, -180-R Systems Component Identification

- A. Controller Controls the operation of the system and displays the product water quality.
- B. Reject Control Valve Controls the amount of reject flow.
- C. Reject Recycle Control Valve Controls the amount of reject recycle flow.
- D. Pump Discharge Valve Used to throttle the pump.
- E. Prefilter Inlet Pressure Gauge Indicates the inlet pressure of the prefilter.
- F. Pump Suction Pressure Gauge Indicates the prefilter outlet and pump suction pressure. The difference between this gauge and the prefilter inlet gauge is the prefilter differential pressure of the prefilter.
- G. Pump Discharge Pressure Gauge Indicates the pump discharge pressure.
- H. Membrane Feed Pressure Gauge Indicates the membrane feed pressure.
- I. Reject Pressure Gauge Indicates the reject pressure.
- J. Reject Flow Meter Indicates the reject flow rate in gallons per minute (gpm).
- K. Reject Recycle Flow Meter Indicates the reject recycle flow in gpm.
- L. Product Flow Meter Indicates the product flow rate in (gpm).
- M. Prefilter Housing Contains the RO prefilters.
- N. Automatic Inlet Valve Opens when the pump is on and closes when the pump is off.
- O. RO Feed Pump Pressurizes the RO feed water.
- P. RO Membrane Vessels Contains the RO membranes.
- Q. Motor starter/transformer enclosure.

2.2. **Controller Drawing** CONTACTOR **P •** • • • • • **@**'**@**'**@**' **@**`@`@`@ CIRCUIT BOARD 0 **⊡** 208V **⊕** 460∨ OVERLOAD RELAY CIRCUIT BOARD (Shown wired for 230V) MOTOR STARTER 24 V COIL WIRING lī **PUMP** 3-PHASE **RO PUMP** POWER INLET STARTER :::0 6666 BOARD ⊕ DISPLAY BOARD OVERLOAD RELAY CIRCUIT BOARD TRANSFORMER RO PUMP TANK PRESS. SWITCH 120V TO UV 120V TO CHEMICAL PUMP CONNECT TO TERMINALS 81 & 82 LEAVE JUMPER INSTALLED 72 & 82

Figure 2-4: Controller Wiring

3. OPERATION

3.1. Installation

- 1. Water supply should be sufficient to provide at least 20 psig pressure at the design feed flow.
- 2. Proper pretreatment must be determined and installed prior to the RO system.
- 3. A fused high voltage disconnect switch located within 10 feet of the unit is recommended. This disconnect is not provided with the RO system.
- 4. Responsibility for meeting local electrical and plumbing codes lies with the owner /operator.
- 5. Install indoors in an area protected from freezing. Space allowances for the removal of the membranes from the pressure vessels should be provided. This system requires 42" minimum clear space on each side.

3.2. Plumbing Connections

NOTE: It is the end user's responsibility to ensure all local codes and regulations are followed.

- Connect the pretreated feed water line to the inlet side of the prefilter housing (Figure 2-1, item A). A feed water shutoff valve should be located within 10 feet of the system.
- 2. Temporarily connect the outlet of the product water flow meter to drain (Figure 2-1, item B). The product water line should never be restricted. Membrane and/or system damage may occur if the product line is blocked.
- 3. Connect the outlet of the reject water flow meter to a drain (Figure 2-1, item C). The reject drain line should never be restricted. Membrane and/or system damage may occur if the reject drain line is blocked. An air gap must be located between the end of the drain line and the drain. The use of a standpipe or other open drain satisfies most state and local codes and allows for visual inspection and sampling.

3.3. Electrical Connections

NOTE: It is the end user's responsibility to ensure all local codes and regulations are followed.

- A safety switch or fused disconnect should be installed within 10 feet of the system.
- 2. Verify that the disconnect switch is de-energized using a voltmeter.
- 3. Connect the outlet of the disconnect switch to the terminals on top of the motor starter (Figure 2-5). Attach the power supply ground to the chassis ground. It may be necessary to drill a hole in the enclosure and install a water-tight strain relief or conduit connector. The hole size and location must be determined by the installer. Check the pump motor nameplate for the amperage draw at various voltages to determine the wire size required.
- 4. Do not apply power to the RO unit at this time.

3.4. Startup

3.4.1. WQRS-005-R, WQRS-010-R, and WQRS-015-R Systems:

- 1. Verify that the pretreatment equipment is installed and working properly. Verify that no free chlorine is present in the feed water.
- 2. Verify that the pump discharge valve (Figure 2-1, item D) is open.
- 3. Install the 20" five-micron filter cartridge in the prefilter housing. (Figure 2-1, item K)
- 4. Open the reject control valve completely (Figure 2-1, item B) by turning it counterclockwise. Close the reject recycle control valve completely (Figure 2-1 item C) by turning it clockwise.
- 5. Open the feed water shutoff valve installed in step 1 of section 3.2. above.
- 6. Manually open the inlet solenoid valve (figure 2-1, item L) by turning the white lever located near the valve outlet.
- 7. Water will flow through the system and drain through the reject flow meter (Figure 2-1).
- 8. Manually close the inlet solenoid valve after the air has been purged from the system, or after 10 minutes, whichever occurs first.
- 9. Close the pump valve halfway. (Figure 2-1, item D)
- 10. Engage the safety switch or disconnect (installed in Section 3.3, step 1, above) to apply electrical power to the RO system.
- 11. Press the **On/Off** button on the controller. When the pump starts, press and hold the **On/Off** button to turn off the pump and look at the motor fan as the pump stops to determine if the pump rotation is correct. See the controller section for more details. The fan should rotate in the direction of the rotation arrow located on the pump. Continue with the startup if the pump is rotating in the proper direction. If the pump is rotating backward, change the rotation by disconnecting the power and reversing any two of the wires on the power inlet. Verify proper pump rotation before continuing.
- 12. Turn the system on.
- 13. Adjust the reject control valve(s) (Figure 2-1, items B & C) and the pump discharge valve (Figure 2-1 item D) until the desired flows are achieved. Closing the reject valve increases the product flow and decreases the reject flow. Opening the pump discharge valve increases both the reject flow and the product flow. See the flow rate guidelines and Temperature Correction table in the Appendix to determine the flow rates for different operating temperatures.
- 14. Allow the product water to flow to drain for 30 minutes.
- 15. Turn off the system and connect the product line to the point of use. (Figure 2-1 item I) The product water line should never be restricted. Membrane and/or system damage may occur if the product line is blocked.
- 16. Restart system and record the initial operating data using the log sheet in the next section.

NOTE: The mechanical seal *must* be vented during startup. Failure to vent the seal may result in premature seal failure.

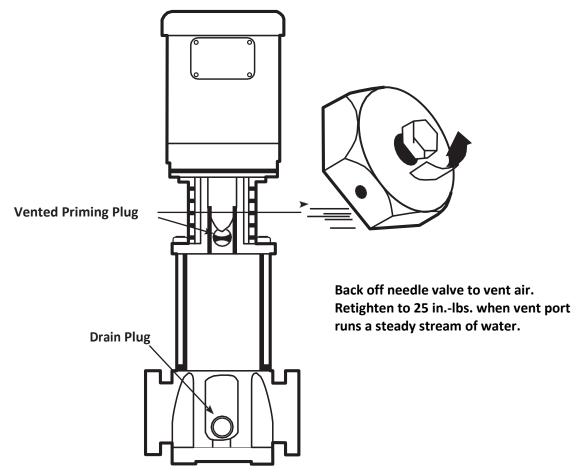


Figure 3-1: Needle Valve Location

3.4.2. WQRS-030-R, WQRS-060-R, WQRS-090-R, and WQRS-180-R Systems:

- Verify that the pretreatment equipment is installed and working properly. Verify that no free chlorine is present in the feed water.
- Close the pump discharge completely then open it one turn. (Figures 2-2 and 2-3, item D). Note: All valves on this unit turn clockwise to close.
- 3. Install the 5-micron cartridge in the prefilter housing (Figure 2-1, item M).
- 4. Open reject control valve by turning counterclockwise (Figures 2-2 and 2-3, item B).
- 5. Close the reject recycle control valve completely by turning it (Figures 2-2 and 2-3, item C).
- 6. Open the feed water shutoff valve installed in step 1 of section 3.2. above.
- 7. Engage the safety switch or disconnect (installed in step 1 of section 3.3. above) to apply electrical power to the RO system.
- 8. Press the controller on/off button. When the pump starts, press and hold the on/off button and look at the motor fan as the pump stops to determine if the pump rotation is correct. The fan should rotate in a counterclockwise direction when viewed from the top. Continue with the startup if the pump is rotating in the proper direction. If the pump rotation is backward, reverse the rotation by shutting off the power and swapping any two of the three power lines connected (installed in Section 3.3, step 1)
- 9. Turn the system on and allow the product and reject water to go to the drain for 15 minutes.

- 10. Adjust the reject and reject recycle control valves (Figures 2-2 and 2-3, items B and C), and the pump discharge valve (Figures 2-2 and 2-3, item D) until the desired flows are achieved. Closing the reject valve increases the recycle and product flow and decreases the reject flow. Closing the reject recycle valve increases the reject and product flow and decreases the recycle flow. Opening the pump discharge valve increases all of the flows. See the temperature correction table in the appendix to determine the flow rates for different operating temperatures.
- 11. Allow the product water to flow to the drain for 30 minutes.
- 12. Turn off system and connect product line to point of use. The product water line should never be restricted. Membrane and/or system damage may occur if the product line is blocked.
- 13. Restart the system and record the initial operating data using the log sheet in the next section.
- 14. See Section 4 for detailed information about the controller.

4. ROC-4 CONTROLLER OPERATION AND MAINTENANCE

The ROC-4 microprocessor-based controller with a product water conductivity meter is the controller for this system.

TABLE 1. SPECIFICATIONS				
Inputs				
Tank level switches	(2) Normally-Closed. Can be used with a single level switch.			
Inlet pressure switch	Normally-Open.			
Pretreat lockout switch	Normally-Open.			
High pressure switch	Normally-Open.			
(opt) Controller Power	24 VAC, 60/50Hz			
Permeate Conductivity	0-3000 PPM, 0-6000 μs (standard sensor, CP-1, K=.75)			
Feed Conductivity (opt)	0-3000 PPM, 0-6000 μs (standard sensor, CP-1, K=.75)			
Output Ratings				
Feed Solenoid	24 VAC – 1 amp			
Flush Solenoid	24 VAC – 1 amp			
Divert (opt)	24 VAC – 1 amp			
Motor Contactor Coil	otor Contactor Coil 24 VAC – 1 amp			
Circuit Protection				
Main Power Fuse	F1 5 x 20 mm 2 Amp			
Relay/XFMR Fuse	F2 5 x 20 mm 0.125 Amp			
Other				
	11.5" tall, 9.3" wide, 6.7" deep. NEMA 4X non-metallic (10 x 8 x 6)			
Dimensions	13.5" tall, 11.4" wide, 6.7" deep. NEMA 4X non-metallic (12 x 10 x 6)			
	15.5" tall, 13.3" wide, 7.7" deep. NEMA 4X non-metallic (14 x 12 x 7)			
	4.2 lb. (10 x 8 x 6) (Enclosure, CPU-4 and TB-3 only.)			
Weight	6.0 lb. (12 x 10 x 6) (Enclosure, CPU-4 and TB-3 only.)			
	10.6 lb. (14 x 12 x 7) (Enclosure, CPU-4 and TB-3 only.)			
Environment	0-50°C, 10-90% Relative Humidity (non-condensing)			

Lync WQ-RS

4 ROC-4 CONTROLLER OPERATION AND MAINTENANCE

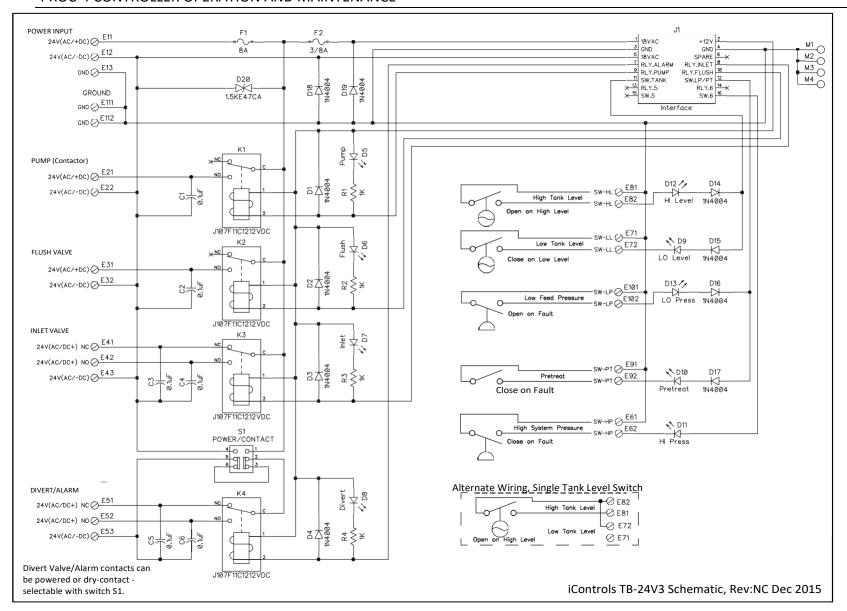
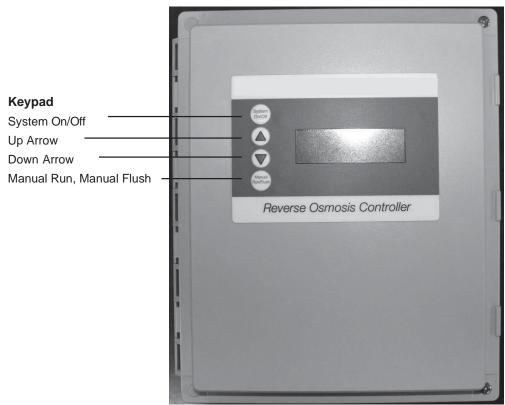



Figure 4-1

Display

(4 line, 20 character) Provides feedback on the system status

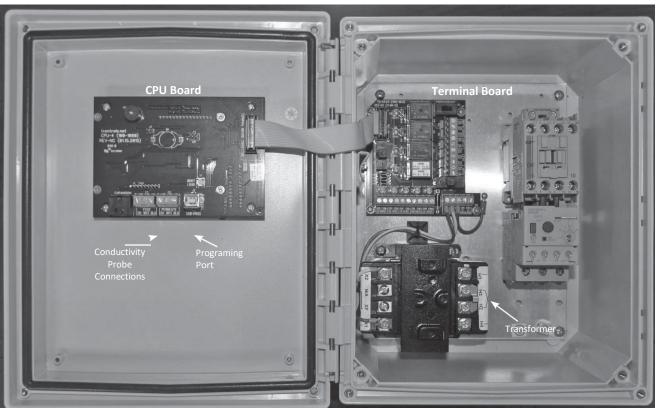


Figure 4-2: Controller Overview

Pictorial Schematic of a Typical ROC-4 System

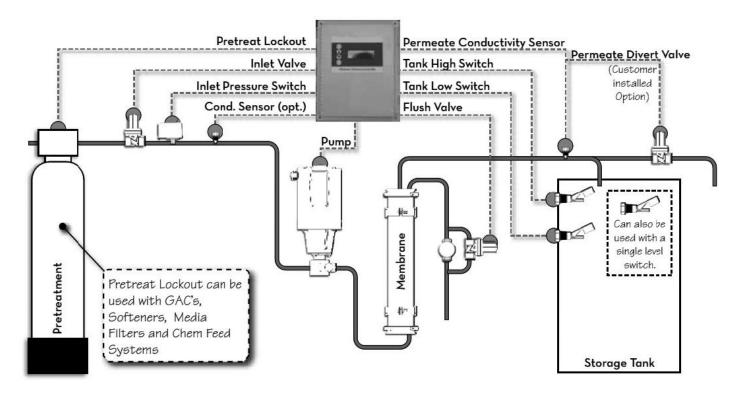
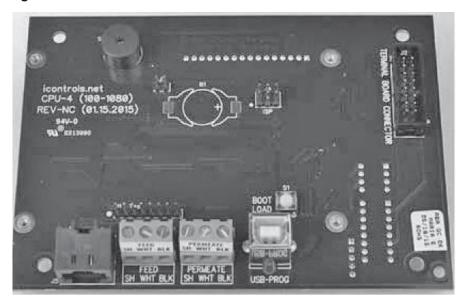



Figure 4-3: Wiring Diagram

Typical Configuration

Detailed View

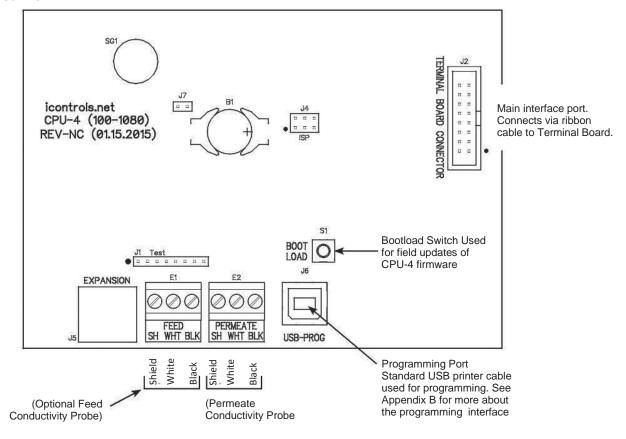
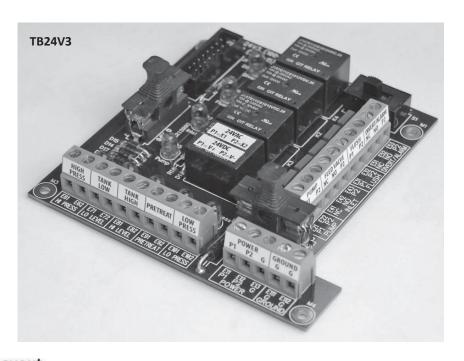



Figure 4-4: Controller Detail: CPU-4

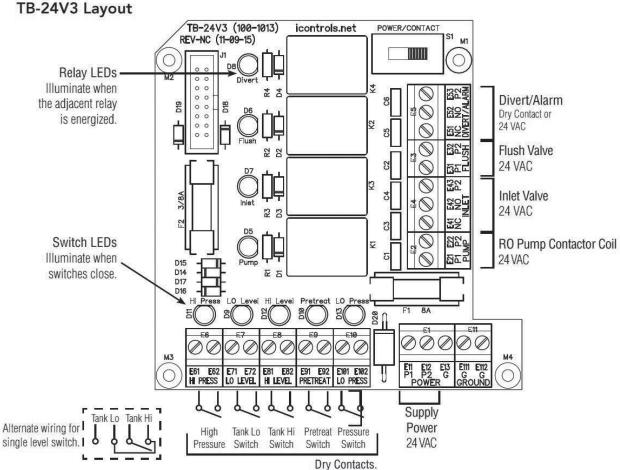


Figure 4-5: Controller Detail: Terminal Board, TB-3

If not pre-installed, install the Conductivity Probe in the "Run" of a Tee or equivalent location. Orient the probe so that air cannot become trapped in the area near the probe.

Figure 4-6: Conductivity Probe Installation

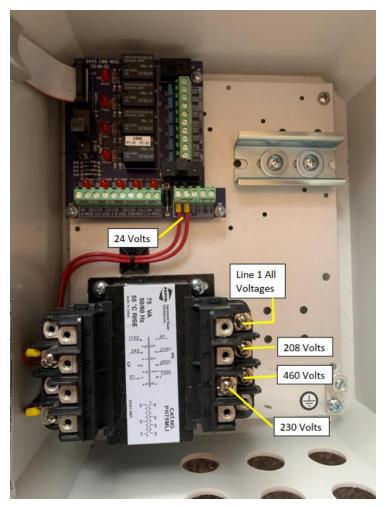


Figure 4-7: Input Wiring

4.1. Control Box Installation

This information is provided in case the controller is purchased as a standalone product.

- 1. Drill the enclosure as needed and install liquid-tight fittings for the wiring.
- 2. Mount the enclosure in the desired location on the RO system.
- 3. Bring the wires from the peripheral devices into the enclosure and connect them to the appropriate terminals. (See Figures 2- and 3-4 through 3-6.)
- 4. Install the conductivity cell in the permeate line (see Figure 3-7 and 3-8 for conductivity cell installation instructions).
- Connect the conductivity cell to the terminals on the CPU Board (see Figure 3-4). Repeat Steps
 8 7 for the Feed Conductivity cell if your system will utilize both feed and permeate conductivity measurement.
- 6. Provide power to the RO system.
- 7. Press the **System On/Off** switch to turn the system ON.
- 8. Select the Program Mode (see Figure 3-7 and 3-8, and Table 2). The default is Program 1, which is a general purpose setting. Use Program 2 if your system is not equipped with a flush valve.
- 9. Make any other desired changes to the settings. Press **System On/Off** to save your changes.
- 10. The controller is now ready for service.

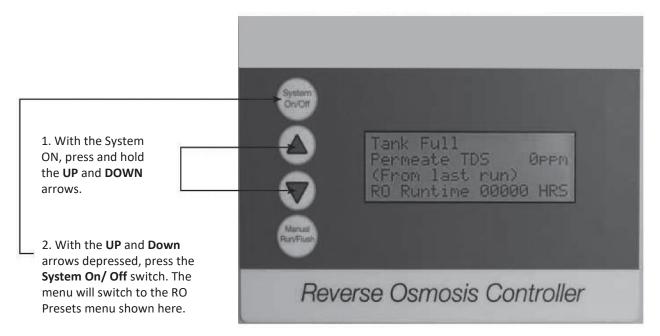


Figure 4-8: Controller Programming. Accessing the hidden menus

TABLE 2. CONTROLLER PROGRAMMING: ROC-4 PROGRAM SELECTIONS

The controller has 4 separate user-selectable sets of settings for configuring the RO. The factory default settings are shown below. The settings are identical except for variations in the flush behavior.

- · Program 1, High Pressure flush.
- · Program 2, No Flush
- Program 3, Permeate Flush, (low pressure, inlet valve closed)
- Program 4, Low Pressure, feed water flush
- See the previous page for instructions on how to access the menu for selecting these programs.
- See Appendix A for a detailed explanation of the Parameters and their effect on the RO's operation

Parameter	Value	Program 1	Program 2	Program 3	Program 4
Tank Level Switch delay (actuation and deactuation)	Seconds	2	2	2	2
Pressure Switch delay (actuation and deactuation)	Seconds	2	2	2	2
Pretreat Switch delay (actuation and deactuation)	Seconds	2	2	2	2
Pump start delay	Seconds	10	10	10	10
Inlet Solenoid stop delay	Seconds	5	5	1	1
Pump start retry interval (restart delay after LP fault)	Seconds	60	60	60	60
Low pressure fault shutdown, # of faults	Faults	5	5	5	5
Low pressure fault shutdown, time period to count faults	Minutes	10	10	10	10
Low pressure fault shutdown, reset after shutdown	Minutes	60	60	60	60
Low pressure timeout fault	Seconds	60	60	60	60
Flush Behavior		High Pressure	No Flush	Permeate Flush	Low Pressure Flush
Startup Flush: Minutes from last flush	Minutes	0	0	0	0
Startup Flush: Duration	Seconds	0	0	0	30
Periodic Flush: Interval	Minutes	60	0	0	0
Periodic Flush: Duration	Seconds	30	0	0	0
Shutdown Flush: Time from last flush	Minutes	10	0	0	0
Shutdown Flush: Minimum operation	Minutes	30	0	0	0
Shutdown Flush: Duration	Seconds	60	0	60	60
Idle Flush: Interval *	Minutes	0	0	0	0
Idle Flush: Duration *	Seconds	0	0	0	0
Timed Manual Run	Minutes	5	5	5	5
Timed Manual Flush	Minutes	5	0	5	5

^{*} These features are disabled by default to prevent confusion on the part of end-users in the field. They can be enabled when needed via the OEM PC programming interface which allows changes to all of the values shown above.

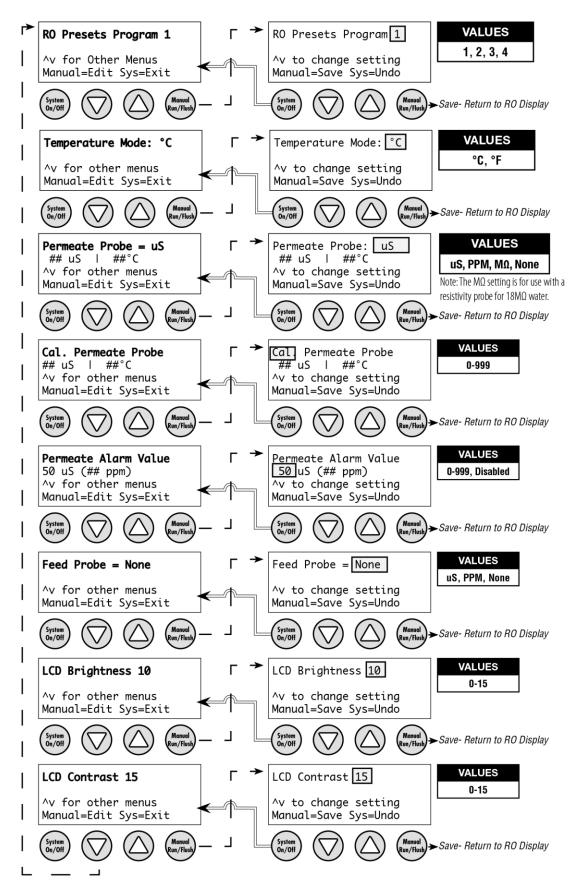


Figure 4-9: Controller Programming: Menu Navigation

5. REPLACEMENT PART LIST

5.1. WQRS-005-R, WQRS-010-R, and WQRS-015-R Systems

Description	Part Number
Pre-Filter housing 20" Full Flow	68107603
RO Membrane Pressure Vessels 4" x 40" FRP	68107310
RO Membrane Pressure Vessel 4" x 40" FRP (bottom)	68107309
Flow Meter 1 - 10 gpm (product)	7300464
Flow Meter 1 - 10 gpm (reject)	7300468
Motor Starter Contactor, 16 amps, 24 volt coil	7300924
Overload Relay 3.2 - 16 amps	7300925
Pump and Motor BVMI 3-21 5 HP, 3-Phase	68107195
Low-Pressure Switch, 4psi for package II Controller	7300444
Inlet Solenoid Valve, 1", 24 volt coil	7300390
Watts 4" x 40" RO Membranes	7300817
Package II Controller ROC-4	68110205
Conductivity Probe	68106950
Autoflush Solenoid Valve, 1/2", Brass, 24 volt coil	7300446

5.2. WQRS-030-R, and WQRS-060-R Systems

Description	Part Number
Pre filter housing - Watts Big Bubba	68100639
Pre Filter Cartridge, Watts Big Bubba	68100632
Pressure Gauge, 2 1/2", 0-100 psi, LF, Stem Mount	68106168
Pressure Gauge, 2 1/2", 0-400 psi, LF, Stem Mount	68107028
Pressure Gauge, 2 1/2", 0-300 psi, LF, Back Mount	68106171
Product Flow Meter, 4 – 40 gpm, 1.5"	68107158
Reject & Recycle Flow Meter, 2 - 20 gpm, 3/4"	68107140
Pump & Motor, 3-Phase, 60Hz, 10 HP	68107216
Motor Starter – Contactor, 30 amp, 24 VAC	68106939
Motor Starter – Overload Relay, 9-45 amps	68106949
Conductivity probe with 20ft cable	68106951
Low Pressure Switch	68101627
Inlet Solenoid Valve 24 volt, 2"	68104799
8" x 40" RO Membranes	68107308

5.3. WQRS-090-R, and WQRS-180-R Systems

Description	Part Number
Pre filter housing 7 round 40"	68102265
Pressure Gauge, 2 1/2", 0-100 psi, LF, Back Mount	68106167
Pressure Gauge, 2 1/2", 0-400 psi, LF, Back Mount	68107029
Flow Meter 2 - 20 gpm	68107155
Flow Meter 4 - 40 gpm	68107157
Flow Meter 6 – 60 gpm	68107160
Flow Meter 10 – 80 gpm	68107161
Controller with conductivity meter	68110588
Pump & Motor, 3-Phase, 60Hz, 20 hp	68107218
Pump & Motor, 3-Phase, 60Hz, 30 hp	68107208
Low Pressure Switch	68101627
Inlet Solenoid Valve 24 volt, 3"	68104800
8" x 40" RO Membranes	68107308
Pre Filter Cartridges 40" 5 micron	68108722

6. MEMBRANE REPLACEMENT

- 1. Turn off the system and close the feed water shutoff valve.
- 2. Disconnect the membrane feed hoses by loosening the brass fittings between the end of the hoses and the pressure vessel end caps.
- 3. Remove the retaining plates the pressure vessel end caps.
- 4. Push the old membrane out of the vessel in the direction of the feed flow. (See flow arrows on the right side of Figure 2-1)
- 5. Record the serial numbers of the new membranes.
- 6. Lightly lubricate the brine seals on the new membranes with clean water.
- 7. Install the new membranes in the direction of flow with the brine seal end going in last.
- 8. Lightly lubricate the end cap internal and external O-rings with glycerin.
- 9. Install the end caps and secure them with the retaining plates.
- 10. Install the membrane feed hoses.
- 11. Verify that all retaining plates are installed.
- 12. Follow the startup procedure in Section 3.4: Startup.

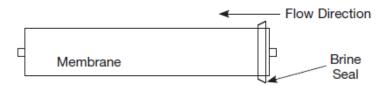


Figure 6-1: Membrane Seal

APPENDIX A - CONTROLLER PROGRAMMING: PARAMETERS

Parameter	Value	Range	Example
Input Switch Behaviors			
Tank Level Switch de-Bounce	Seconds		2.0
This specifies the time that the tank switch must be closed of as a valid condition. This helps to prevent nuisance tripping turbulent tanks			
Pretreat Switch de-Bounce	Seconds		2
This is the time that the pretreat switch must be OPEN before condition. The function is to prevent nuisance tripping of the tanks			
Pump/Inlet Solenoid Behaviors			
Pump start delay	Seconds		10
On RO start-up, after the tank switch opens, the inlet soleno begins the "Pump start delay". If the pressure switch remain:			witch closes this
Inlet Solenoid stop delay	Seconds		1
This value sets the delay for the inlet solenoid valve to be de shut down. This prevents the pump from operating against a or 2 seconds may require an inlet valve that will operate with	closed suction as the pu	ımp spins down. Time	
Low Inlet Pressure Behaviors	1	T	
Pump start retry interval (restart delay after LP fault)	Seconds		60
When the inlet pressure switch opens, the controller de-ene controller will continue to monitor the inlet pressure switch. A interval" the motor is re-energized.			
Low pressure fault shutdown, # of faults	Faults		5
Low pressure fault shutdown, time period to count faults	Minutes		10
Low pressure fault shutdown, reset after shutdown (0 value = no restart)	Minutes		60
These three values work together to determine how the RO and "time period to count faults", sets the limit for the numbe in "Low Pressure Fault Shutdown". The third value sets the that the RO will remain idle before trying to restart. The purp turning OFF/ON repeatedly without any limit.	r of low fault conditions of duration of the "Low Pres	over time that are requi sure Fault Shutdown" v	red to place the RO which is the period
Low pressure timeout fault	Seconds		60
If the inlet valve is open, but the pressure isn't sufficient to copressure. This value sets the time limit for the RO to operate inlet pressure switch before a Low Pressure Fault is added to	with the inlet valve oper		
Flush Behavior			
Time from last flush before Flush on Shutdown	Minutes		15
Minimum operation before Flush on Shutdown	Minutes		60
Flush duration on Shutdown	Seconds		60
Periodic Flush interval	Minutes		60
Periodic Flush duration	Seconds		30
Unit Idle Flush interval	Minutes		0
The Unit Idle Flush Interval sets a time after which the RO was because of the danger of over-flowing a tank if not properly idle for long periods would invite bio-fouling. (0)=disabled			
Unit Idle Flush duration	Seconds		0
Sets the duration of the Idle Flush. (0)=disabled	1		1
Timed Manual Run - Duration of Manual Run	Minutes		5
Timed Manual Flush - Duration of Manual Flush	Minutes		5
Conductivity Probe Sample Rate	Seconds		2
Conductivity Shutdown (0)=disabled	Minutes		0

CONTROLLER FAULT CONDITION DISPLAYS

Below are examples and explanations of the displays which accompany the fault conditions possible in the ROC-4. Fault conditions always indicated a problem of some sort which requires corrective action. The displays provide sufficient information to recognize the source of the fault and the required corrective action.

High Pressure Fault: (Occurs when High Pressure Switch Closes) Line 1 "Service Fault"

Line 2 "High System Pressure" Line 3

Line 4 "To Reset Push OFF/ON"

Low Pressure Fault: (System is responding to low pressure condition per system settings) Line 1 "Service Fault"

Line 2 "Low Feed Pressure" Line 3

Line 4 "Restart in MM:SS"

Pre Treat Fault: (Pretreat Switch is closed indicating problem with pretreat system). Line 1 "Service Fault"

Line 2 "Pretreat"

Line 3

Line 4 "Check Pretreat Sys."

Permeate Conductivity Fault: (Permeate conductivity is higher than the alarm set point.) Line 1 "Service Fault"

Line 2 "Permeate TDS xxx ppm" or "Permeate Cond xxx uS" Line 3 "Alarm SP xxx ppm" or "Alarm SP xxx uS"

Line 4 "To Reset Push OFF/ON"

Feed Conductivity Fault: (Feed conductivity is higher than the alarm set point.) Line 1 "Service Fault"

Line 2 "Feed TDS xxx ppm" or "Feed Cond xxx uS" Line 3 "Alarm SP xxx ppm" or "Alarm SP xxx uS" Line 4 "To Reset Push OFF/ON"

Conductivity Probe Error messages:

Line 2 "Over-range" - Measurement is out of range for the circuit, probe may also be shorted

Line 2 "Probe shorted" - Short circuit detected on temperature sensor in probe

Line 2 "Probe not detected" - Open circuit detected on temperature sensor in probe

Line 2 "Probe Startup 1" - Internal reference voltage too high to make valid measurement

Line 2 "Probe Startup 2" - Internal reference voltage too low to make valid measurement

Line 2 "Probe Startup 3" - Internal excitation voltage too high to make valid measurement

Line 2 "Probe Startup 4", - Internal excitation voltage too low to make valid measurement

WQ-RS OPERATION AND MAINTENANCE LOG

Remarks

Note: Change the prefilter when the differential pressure increases by 5 - 10psi over the clean differential pressure. Clean the RO membrane(s) when the product flow drops by 15% or more.

23

RO TROUBLESHOOTING GUIDE

SYMP	TOMS					
Salt Passage	Permeate Flow	Pressure Drop	Location	Possible Causes	Verification	Corrective Action
Normal to increased	Decreased	Normal to increased	Predominantly first stage	Metal oxide	Analysis of metal ions in cleaning solution.	Improved pretreatment to remove metals. Cleaning with acid cleaners.
Normal to increased	Decreased	Normal to increased	Predominantly first stage	Colloidal fouling	SDI measurement of feed / X-ray diffraction analysis of cleaning sol. Residue.	Optimize pretreatment system for colloidal removal. Clean with high pH, anionic detergent formulation.
Increased	Decreased	Increased	Predominantly last stage	Scaling (CaSO ₄ , CaSO ₃ , BaSO ₄ , SiO ₂)	Analysis of metal ions in cleaning sol. Check LSI of reject. Calculate maximum solubility for CaSO ₄ , BaSO ₄ , SiO ₂ in reject analysis.	Increase acid addition and scale inhibitor for CaSO ₃ and CaSO ₄ . Reduce recovery. Clean with an acid formulation for CaCO ₃ , CaSO ₄ and BaSO ₄ .
Normal to moderate increase	Decreased	Normal to moderate increase	Can occur in any stage	Biological fouling	Bacteria count in permeate and reject. Slime in pipes and vessels.	Shock dosage of sodium bisulfite. Continuous feed of low conc. Of bisulfite at reduced pH. Formaldehyde sterilization. Clean with alkaline anionic surfactant. Chlorine dosage up-stream with subs. Dechlorination. Replace cartridge filters.
Decreased or moderately increased	Decreased	Normal	All stages	Organic fouling	Destructive testing, e.g. IR reflection analysis.	Optimization of pretreatment system (e.g. coagulation process.) Resin/activated carbon treatment. Clean with high pH detergent.
Increased	Increased	Decreased	Most severe in the first stage	Chlorine oxidant attack	Chlorine analysis of feed. Destructive element test.	Check chlorine feed equipment and dechlorination equipment.
Increased	Increased	Decreased	Most severe in the first stage	Abrasion of membrane by crystalline material	Microscopic solids analysis of feed. Destructive element test.	Improved pretreatment. Check all filters for media leakage.
Increased	Normal to increased	Decreased	At random	O-ring leaks, End or side seal glue leaks.	Probe test. Vacuum test. Colloidal material passage.	Replace O-rings. Repair or replace elements.
Increased	Normal to low	Decreased	All stages	Conversion too high.	Check flows and pressures against design guidelines	Reduce conversion rate. Calibrate sensors. Increase analysis and data collection.

MOTOR TROUBLESHOOTING GUIDE

TROUBLE	CAUSE	WHAT TO DO
Motor fails to start	Blown fuses	Replace fuses with proper type and rating.
	Overload trips	Check and rest overload in starter.
	Improper power supply	Check to see that power supplied agrees with motor nameplate and load factor.
	Open circuit in winding or control switch	Indicated by humming sound when switch is closed.
	Mechanical failure	Check to see if motor and drive turn freely. Check bearing and lubrication.
	Short circuited stator	Indicated by blown fuses. Motor must be rewound.
	Poor stator coil connection	Remove end bells, locate with test lamp.
	Rotor defective	Look for broken bars or end ring.
	Motor may be overloaded	Reduce load.
Motor Stalls	One phase connection	Check lines for open phase.
	Wrong application	Change type or size. Consult manufacturer.
	Overload motor	Reduce load.
	Low motor voltage	See that nameplate voltage is maintained. Check connection.
	Open circuit	Fuses blown, check overload relay, stator and push buttons.
Motor runs and then dies down	Power failure	Check for loose connections to line, to fuses and to control.
Motor does not come up to	Not applied properly	Consult supplier for proper type.
speed	Voltage too low at motor terminals because of line drop.	Use higher voltage on transformer terminals or reduce load. Check connections. Check conductors for proper size.
	Broken rotor bars or loose rotor.	Look for cracks near the rings. A new rotor may be required as repairs are usually temporary.
Motor takes too long to	Open primary circuit	Locate fault with testing device and repair.
accelerate	Excess loading	Reduce load.
	Poor circuit	Check for high resistance.
	Defective squirrel cage rotor	Replace with new rotor.
	Applied voltage too low	Get power company to increase power tap.
Wrong rotation	Wrong sequence of phases	Reverse connections at motor or at switchboard.
Motor overheats while	Overloaded	Reduce load.
running under load	Frame or bracket vents may be clogged with dirt and prevent proper ventilation of motor.	Open vent holes and check for a continuous stream of air from the motor.
	Motor may have one phase open	Check to make sure that all leads are well connected.
	Unbalanced terminal voltage	Check for faulty leads, connections and transformers.

Motor vibrates after correcting	Motor misaligned	Realign	
	Weak support	Strengthen base.	
	Coupling out of balance	Balance coupling.	
	Driven equipment unbalanced	Rebalance driven equipment.	
	Defective ball bearing	Replace bearing.	
	Bearing not in line	Line properly.	
	Balancing weights shifted	Rebalance motor.	
	Polyphase motor running single phase	Check for open circuit.	
	Excessive end play	Adjust bearing or add washer.	
Unbalanced line current on polyphase motors	Unequal terminal volts	Check leads and connections	
during normal operation	Single phase operation	Check for open contacts	
Scraping noise	Fan rubbing air shield	Remove interference.	
	Fan striking insulation	Clear fan.	
	Loose on bedplate	Tighten holding bolts.	
Noisy operation	Airgap not uniform	Check and correct bracket fits or bearing.	
	Rotor unbalance	Rebalance.	
Hot bearings general	Bent or sprung shaft	Straighten or replace shaft.	
	Excessive belt pull	Decrease belt tension.	
	Pulleys too far away	Move pulley closer to motor bearing.	
	Pulley diameter too small	Use larger pulleys.	
	Misalignment	Correct by realignment of drive.	
Hot bearings ball	Insufficient grease	Maintain proper quantity of grease in bearing.	
	Deterioration of grease, or	Remove old grease, wash bearings thoroughly in	
	lubricant contaminated	kerosene and replace with new grease.	
	Excess lubricant	Reduce quantity of grease: bearing should not be more than 1/2 filled.	
	Overloaded bearing	Check alignment, side and end thrust.	
	Broken ball or rough races	Replace bearing: first clean housing thoroughly.	

These instructions do not cover all details or variations in equipment nor provide for every possible condition to be met in connection with installation, operation or maintenance. Chart courtesy of Marathon Electric.

RO SYSTEM TROUBLESHOOTING

PROBLEM	REMEDY	
General		
High Product Water TDS		
Membrane expanded.	Replace membrane.	
Membrane attack by chlorine	Carbon pre-filter may be exhausted. Replace with a new cartridge.	
Clogged pre-filter-creates pressure drop and low reject flow.	Replace pre-filter cartridge.	
Feed pressure too low.	Feed pressure must be at least 20psi.	
Insufficiently flushed post-filter cartridge.	Flush post-filter with pure water.	
Brine seal on membrane leaks.	Determine if seal or O-ring is bad. Replace as needed.	
No Product Water or Not Enough Product Water		
Feed water shut off.	Turn on feed water.	
Low feed pressure.	Consider booster pump.	
Feed pressure must be at least 20psi.	Replace pre-filter cartridge.	
Pre-filter cartridge clogged.	Determine and correct cause; replace membrane.	
Membrane fouled. Product check valve stuck.	Replace check valve fitting.	
Low pump discharge pressure	Open pump discharge valve, replace pump	

APPENDIX B - DETERMINING FLOW RATES

The following tables are intended as a guide to determining the flow rates for the WQ-RS series RO systems. All flows are in gallons per minute (GPM). Nominal flows for systems with reject recycle and a feed water Silt Density Index less than 3.

MODEL NUMBER	WQ-RS-005-R	WQ-RS-010-R	WQ-RS-015-R
Product	2.5	5	7.5
Reject	2.5	1.7	2.5
Reject Recycle	3.6	3.3	2.1

Nominal flows for systems with reject recycle and a feed water Silt Density Index of 3 to less than 5.

MODEL NUMBER	WQ-RS-005-R	WQ-RS-010-R	WQ-RS-015-R
Product	2.3	4.3	6.3
Reject	2.3	1.4	2.1
Reject Recycle	4.3	3.9	2.3

Temperature Correction Factors

°C	°F	CORRECTION FACTOR
30	86	1.16
29	84.2	1.13
28	82.4	1.09
27	80.6	1.06
26	78.8	1.03
25	77	1.00
24	75.2	0.97
23	73.4	0.94
22	71.6	0.92
21	69.8	0.89
20	68	0.86
19	66.2	0.84
18	64.4	0.81
17	62.6	0.79
16	60.8	0.77
15	59	0.74
14	57.2	0.72
13	55.4	0.70
12	53.6	0.68
11	51.8	0.66
10	50	0.64
9	48.2	0.62
8	46.4	0.61
7	44.6	0.59
6	42.8	0.57
5	41	0.55

Multiply the nominal product flow at 25° C by the temperature correction factor to determine the flow at various other temperatures.

CUSTOMER SERVICE INFORMATION

Contact our Customer Care team to report a warranty problem or for technical assistance with your Lync system solution. Please have your product model number, serial number and all relevant information pertaining to your problem ready when calling.

1-800-433-5654 Select Option 3

Mon-Fri: 8:00am- 5:00pm CST

For after-hours service emergencies, call 1-800-433-5654 for live technical support.

Contact Us

Lync

Fort Worth, TX 76111-4509

Phone: <u>817-335-9531</u> Toll Free: <u>800-784-8326</u> Fax: 817-332-6742